LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

THIRD SEMESTER - NOVEMBER 2013

PH 3505/PH 3503 – THERMODYNAMICS

Dept. No. Date : 08/11/2013 Max.: 100 Marks Time : 9:00 - 12:00

PART – A

Answer **ALL** the questions:

- 1. State the basic assumption made in the kinetic theory of gases.
- 2. Calculate the average kinetic energy of an air molecule at 27 °C.
- 3. Write down the equation of state for an ideal gas when it undergoes a reversible, (i) isothermal and (ii) adiabatic changes.
- 4. Define Super fluidity.
- 5. The internal energy of an ideal gas does not change with its volume. why?
- 6. State the second law of thermodynamics.
- 7. Define Helmholtz and Gibbs functions.
- 8. State the condition for two phases to be in equilibrium.
- 9. Define thermodynamic probability.
- 10. State Wien's displacement law.

PART - B

Answer ANY FOUR questions:	(4 x 7.5=30)
11. (a) Define mean free path.	[2]
(b) Obtain an expression for the mean free path. State your assumptions clearly.	[5.5]
12. Discuss Andrew's experiment on CO ₂ . Cooling.	

- 13. a) Define intensive and extensive variables with examples.
 - b) One mole of a gas, assumed to be perfect, at $0^{\circ}C$ is heated at constant pressure till its volume is twice its initial value. Calculate the amount of heat absorbed. Given $C_V = 20.9 \text{ J/mol.-K}$ and R=8.3J/mol - K[4.5].
- 14. Obtain the following expression for the Joule-Kelvin coefficient,

$$\mu = \frac{T^2}{C_P} \left(\frac{\partial}{\partial T} \left(\frac{V}{T}\right)\right)_P.$$

15. a) Define phase space, microstate and macrostate.

[4.5]

[3]

b) How many ways can 3 particles be distributed among 4 states according to the two statistics.

(10x2=20)

[3]

<u>PART – C</u>	
Answer ANY FOUR questions	(4x12.5=50)
16. a) Define Brownian motion.	[2]
b) Discuss the Langevin's theory of Brownian motion.	[10.5]
17. a) Explain Clement and Desormes method for determining $\gamma = \frac{C_P}{C_V}$.	[9.5]
b) Given $C_V = 20.3 \text{ J/molK}$ and R =8.3 J/molK, calculate γ the ratio of specific heats	. [3.0]
18. a) Derive the Clausius-Clayperon equation involving the latent heat.	[6]
b) Derive the Clausius inequality.	[6.5]
19. a) Obtain the expression for the change in the entropy of an ideal gas.	[7.5]
b) One moles of an ideal gas occupies 10 liters of volume at 4 atm. The gas is heat volume till its pressure is 8atm. Then it is allowed to expand at constant pressur volume is 40 liters, calculate the change in its entropy. Given $C_V = 3$ cal/mol-K a cal/mole-K.	ted at constant e. If its final and $R = 2$ [5]

20. Outline the Plande's quantum theory & Black body radiation. Hence establish wien's displacement law and Stefan's law.

\$\$\$\$\$\$\$